If it's not what You are looking for type in the equation solver your own equation and let us solve it.
301x+x^2-9930=0
a = 1; b = 301; c = -9930;
Δ = b2-4ac
Δ = 3012-4·1·(-9930)
Δ = 130321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{130321}=361$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(301)-361}{2*1}=\frac{-662}{2} =-331 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(301)+361}{2*1}=\frac{60}{2} =30 $
| 4(a-1)=3(a+1) | | 19-2x=-4x+11 | | 4(2x+5)=-48+60 | | -4(r-4)+7=10 | | 7x-10+28=180 | | 1/4u-2/3=1/5 | | 12x-12=48x=1 | | 7x+2=3(x+6) | | 2x+6-2x=2(x+3) | | 19-2X=4x-11 | | (4x5)=1= | | 3z=8.64 | | 4/5y+(-25)=105 | | 6(x-1)=10x-10 | | (4x+3)+(7x-33)= | | 11x5=31-2x | | 2x-26=156 | | 7500+200x+x²=22500-300x-x² | | Y-1/u=-2 | | 4(y+5)+2(7-y)=11 | | w+9/2+7w+5/6=12 | | 5n+1/n=1/2 | | (X-2)/2=x/3 | | 7 | | 4x–172=2028 | | 8x+2x+20=180 | | 3x+.50+x+X+.10=7.50 | | 4/5n+8=1/5(4n+40) | | 23-x=1/2-11+12 | | 5(y-3)-4(3y+4)=20 | | 2x+6-4x=-4 | | 7y-5y-15=17.26. |